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Abstract: A method is presented that uses a diffusion-like process to describe the shape of a region. Convexity is not required, 

the descriptor is invariant under several common transformations, is applicable in the n-dimensional case, and is easy to 

compute. 
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1. Introduction 

Shape description is an essential component 

of any image-understanding system. Many ap- 

proaches to description of shape have been propos- 

ed and used in the fields of image processing and 

computer vision. Pavlidis (1978) suggested a tax- 

onomy of shape descriptors based on: (I) whether 

just the boundary, or the entire interior of the ob- 

ject was examined (the techniques were called ex- 

ternal and internal, respectively); (2) whether the 

characterization was made on the basis of a scalar 

transform (in which a picture is transformed into 

an array of scalar features), or a space transform 

(a picture is transformed into another picture); and 

(3) whether the procedure is or is not information- 

preserving in the sense that the original image can 

be reconstructed from the shape descriptors. 

Existing methods include the tu - s  curve, in 

which ~u is computed as the angle made between a 

fixed line and a tangent to the boundary of the 

region; it is plotted against s, the arc length of the 

boundary traversed. For a closed boundary, the 

function is periodic, and may be associated with 

segmentation of the boundary in terms of straight 

* Visiting from the Department of Physics, National Univer- 

sity of Costa Rica. 

lines and circular arcs (Bailard and Brown, 1982). 

Other methods evaluate eccentricity (or elongated- 

ness) in a variety of ways, including length-to- 

width ratio and ratio of the principal axes of in- 

ertia; compactness (e.g., perimeter2/area, and 

Danielsson's method (Danielsson, 1979)); the 

slope-density function, which is a histogram of ~, 

collected over the boundary; curvature, the 

derivative of ~u as a function of s; projections of 

the figure onto an axis (the signatures); concavity 

with a tree of regions that will create the convex 

hull of the original object; shape numbers based on 

chain-coding of the boundary; and the medial-axis 

transform, which transforms the original object to 

a stick figure that approximates the skeleton of the 

figure. 

We present here a new shape measure that allows 

rapid assignment of labels that are both intuitively 

appealing and rigorously based. The descriptor can 

be computed easily on existing hardware and may 

be implemented immediately on future parallel- 

processing systems. Regions need not be convex 

(although the modest requirement is imposed that 

each region be simply-connected; i.e., have a single 

inside and a single outside). This is a significant ad- 

vantage in light of the comment by Pavlidis (1978) 

that there exist a number of shape description 

techniques applicable only to convex objects, while 
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some of  the general ones perform much better if 

restricted to that class. The method described 

below works equally well for convex and non- 

convex regions. Further, the approach can be ex- 

tended immediately to three-dimensional objects. 

This is the first in a series of  papers examining 

the behavior of  a diffusion-type shape descriptor. 

With respect to the taxonomy noted above, it is in- 

ternal, scalar, and non-information preserving. 

2. Method 

The diffusion-type procedure simulates the 

release at an initial time of  a given number of  par- 

ticles from each pixel along the boundary of  a 

region to be studied. At each instant of  discrete 

time thereafter, new values of  pixel contents are 

computed based on an assumed diffusion constant 

and the isotropic assumption (i.e, that the diffu- 

sion law applies equally in all directions for all 

parts of  the region under study). The process con- 

sists of  an initial transient and a subsequent steady- 

state condition. In steady-state all pixels contain 

the same number of  particles. During the transient, 

however, the number of  particles in each boundary 

pixel depends upon the shape of  the boundary.  The 

concentration is greater in concavities than in con- 

vexities, with straight or nearly-straight regions 

having intermediate concentrations. It is necessary 

therefore to stop the diffusion process during the 

transient to detect these characteristics of  the 

boundary.  When the simulated diffusion process is 

stopped, the sequence of  numbers of  particles in 

the boundary pixels can be used to generate a 

shape-related code. 

This approach is implemented easily on digital 

computers so that the effects of  changes in the 

following relevant process parameters can be 

studied: constant of  diffusion, stopping-time, and 

initial number of  particles per pixel. 

Let Ni, j(l ) be the number of  particles contained 

in the pixel at coordinates ( i , j )  at time t. Then the 

fundamental algorithm to be utilized is: 

N l . j ( t  + 1) = Ni, j ( t )  - 4 K N i ,  j ( t )  

+ K ( N i _  i , ) ( t )  + N i +  i . j ( t )  

Equation (1) expresses the requirement that the 

number of  particles in a given pixei of  the image at 

time t + 1 equals the number of  particles that were 

there at t, minus the number of  particles that were 

transferred by the assumed diffusion process to the 

(4-)neighboring pixels, plus the number of  incom- 

ing particles from those same neighbors, based on 

their respective contents at t. Neighbors that lie 

outside the region do not participate in the process 

o f  equation (1). 

Though in this preliminary communication we 

will consider only the two-dimensional case, the 

approach can be generalized easily to any number 

of  dimensions. In the three-dimensional case the 

basic algorithmic equation is: 

N i . z k ( t  + 1 ) = N i . z t ~ ( t ) - 6 K N i . z k ( t )  

+ K ( N i _  i . k . j ( t )  + Ni+ l.zk(t) 

+ N;.j_ ,.~ it) + Ni.j+ ~,~(t) 

+ N i ,  z k _ l ( t ) + N i . Z k + l ( t ) ) .  (2) 

In general, for the n-dimensional case, if we call 

Nx, . x ,  .. . . .  x , ( t )  the number of  particles contained in 

the pixel x at coordinates x ~ , x  z . . . . .  x n at time t, 

then the following equation will apply: 

N x , . x  , ..... x , ( t  + 1) 

= Nx,.x2 ..... x, ( t ) - 2 n K N x , . x  z ..... x, ( t ) 

+ K ( N x ,  - l.x, .. . . .  x . ( t )  + N x , . , . x :  ..... x . ( t )  

+ Nx t , x2-  t .. . . .  x . ( t )  + Nx t . x ,+ ,  ... . .  x . ( t )  

+ "'" + Nxt,x2 .... .  x . -  l ( t )  + Nx~.x: ..... x.+ i ( t ) )  • 

For the problem that we are considering we do 

not need to adjust the parameter K to experimental 

data - as should be done in the case of  simulation 

o f  a real diffusion process of  matter or heat. So, 

for  purposes of  computation we can assign to K 

any value in the range 0 < K <  1. The smaller K is, 

the higher will be the degree of  detail of  the results 

o f  the diffusion-type process, but of  course at the 

expense of  additional computer time. The t radeoff  

between detail and accuracy on one hand and com- 

puter time on the other will be discussed critically 

in the next paper of  this series. 

+ g i . j + l ( t ) + N i ,  j _ l ( t ) ) .  (1) 
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3. Preliminary results 

The algorithm was tested with two shapes: a 

square, and an irregular region. The corresponding 

results are presented. At the initial time ( t=0) ,  

10000 particles were assigned to each boundary 

pixel for each of  the two cases. In the case of  the 

square, the number of  particles for each pixel of  

the image has been computed for times 10, 50, and 

100. (See Figures la, b, and c, respectively.) For 
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Figure l(a). Number of particles in each pixel for the square 
region, with k=0.01. (a) t= 10. 

the three cases a value of  K=0.01  was used. 

Let us assume that we establish an order on the 

boundary of  those squares by labeling the pixels 

with consecutive natural numbers following a 

clockwise direction, starting at the left uppermost.  

In Figures 2a, b and c the number of particles on 

the boundary pixels has been expressed as a func- 

tion of  the number utilized as labels for the pixels, 

for each of  the corresponding cases of Figure 1. 

In the case of  the irregular shape, only the 

number of  particles of  each pixel on the boundary 

has been shown for times 3 and 10 in Figures 3a 

and b. 

For such irregular shapes the boundary pixels 

are labeled with consecutive integers, again pro- 

ceeding clockwise from the left uppermost pixel. 

Graphics of  the same kind as Figure 2 appear as 

Figure 4 for the irregular shape. 

Both for the case of the regular shape (the 

square) and the irregular one, it can be seen im- 

mediately that the number of  particles per pixel - 

the concentration - is higher in concavities than in 

convexities. 

If human shape perception does rely heavily on 

detection of curvature maxima (Atmeave, 1954), 

then the (positive- and negative-going) peaks in a 

plot of  pixel content-vs.-boundary location (cor- 

responding, respectively, to segments of  high con- 
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Figure l(b). t=50. 
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Figure l(c). t= 500. 
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Figure  2. N u m b e r  o f  par t ic les  for  consecu t ive  b o u n d a r y  pixels  o f  the three  cases o f  F igure  3, beg inn ing  at  the left uppe rmos t .  (a) t = 10; 

(b) t = 50; (c) t = 500. 

cavity and convexity) are likely to be useful in iden- 

tifying those important  regions. 

4. Conclusions and perspectives 

We have presented a new method for describing 

the shape of  a region. The region must be simply- 

connected, but need not be convex. The descriptor 

is invariant under translation, rotations by 

multiples of  90 ° , and, it appears,  under scale 

changes. It is almost invariant - in a sense that will 

be made precise in the next paper - under rotations 

of  non-multiples of  90 ° . It can be implemented 

easily in hardware (especially on future parallel 

processors), is as effective in higher dimensions as 

in two, and will lend itself easily to image- 

processing and pattern-recognition applications. 

The method appears to be relatively insensitive to 

noise (of. the medial-axis t ransform,  in which very 
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Figure 3(a). Number of particles in each boundary pixel for the irregular region (interior pixels' values omitted for clarity), with 
k=0.01, t=3. 

large changes in the axis are produced by very 

small changes in the boundary (Nevatia, 1982)), 

does not pose problems with the definition of  slope 

(Rosenfeld and Johnston,  1973) as occurs in the 

~ - s  curve computation,  and appears to be 

capable of  dealing with the matching of  partially- 

occluded shapes (e.g., in the robot vision case), 

since the diffusion-produced boundary descriptors 

are likely to be less affected far from the occluding 

boundary and thus can provide the basis for a par- 

tial match to a pre-stored description of  a complete 

boundary.  The effects of  noise and of  occlusion 

will be studied together in a forthcoming paper. 

The effect of  changes in the diffusion constant, 

K, and the time at which the process is stopped will 

be examined in detail in future papers. A method 

and its proof  are needed that will allow for in- 

variance of  the measure under scale changes; these 

results are expected soon. The present stopping 

criterion, which terminates the process when the 

difference between maximum and minimum values 

along the boundary is maximized, has great in- 

tuitive appeal, since we are interested in distin- 

guishing concavities from convexities and can 

think of  this as a sensitivity measure. 

Alternatives for the characterization of  the 

results of  the diffusion-type process also will be 

considered in the future. Particle-count plotted 

against boundary position is not necessarily the 

most effective representation. Other possibilities 

are: ( l)  to normalize the count by subtracting the 

mean and dividing by the standard deviation, thus 

providing for the possibility of  establishing data- 

independent criteria for detecting extrema; and (2) 
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Figure 3(b). Number of particles in each boundary for the irregular region (interior pixels' values omitted for clarity), with k=0.01,  

t=10.  

to use the first difference along the boundary to 

detect regions of small and of large change. 
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Fig. 4. Number of  particles for consecutive boundary pixels of  the two cases of  Figure 5, beginning at the left uppermost. (a) t =  3; 

(b) t =  10. 
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