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Abstract

A description is provided of a method – the Set Equality Method
(SEM) – to determine the validity, or lack of validity, of each categorical
syllogism. A justification is given for the presentation of a new method to
solve a problem which has already been solved using different approaches.
First, the SEM assigns an equality of certain sets (or two of those equalities
in specific cases as will be indicated) to each of the categorical propositions
composing each syllogism considered – that is, to each of the two premises
and to the conclusion. Each syllogism considered is valid if and only if
a) it is possible to select one of those equalities corresponding to one of
the premises such that one of its members is a certain set and the other
of those equalities corresponding to the other premise such that one of
its members is a subset of the set mentioned, and b) it is possible to
deduce an equality corresponding to the conclusion of the two equalities
corresponding to the premises. In some cases, as will be specified, it is
possible to provide a second test for the validity of a syllogism whose
validity was already proven, thus providing information about the logical
form of categorical syllogisms.

Keywords: categorical syllogisms, categorical propositions, set theory, set
equalities

Mathematics Subject Classification 2020: 03B05, 03B10, 97E30, 97E60

*Universidad Nacional, Costa Rica. E-mail: osvaldoskliar@gmail.com.
https://orcid.org/0000-0002-8321-3858.

�Universidad Nacional, Costa Rica. E-mail: sherry.gapper.morrow@una.ac.cr.
https://orcid.org/0000-0003-4920-6977.

�Universidad CENFOTEC, Costa Rica. E-mail: rmonge@ucenfotec.ac.cr.
https://orcid.org/0000-0002-4321-5410.

1



1 Introduction

From historical and educational standpoints, forms of reasoning known as syl-
logisms, categorical syllogisms in particular, have played an important role in
logic.

Determining the validity, or lack of validity, of any categorical syllogism is
not an open problem. Hence, for example, one of the methods which may be
used to solve that problem is presented in chapter 16, “Syllogisms”, of W. V.
Quines’ Method of Logic [1]. Other methods used with that same objective have
been presented, for example, in [2], [3], [4], [5], [6], and [7]. The authors of this
article have introduced two more of those methods: the Inclusion Diagrams
Method (IDM) [8] and the Membership Table Method (MTM) [9].

Presenting another method to solve this problem is justifiable if a) that new
method is significantly different from previously known methods used to reach
that objective, because it would be fruitful to focus on a problem from different
standpoints, and b) it can be more easily understood and applied than other
existing methods.

The objective of this article is to present a new method – the Set Equality
Method (SEM) – to determine the validity, or lack of validity, of any categorical
syllogism.

A clear understanding of this article requires only a basic knowledge of a)
certain notions of logic such as those of reasoning, deduction (or inference)
and statement (that is, proposition or sentence), and b) set theory. For an
introduction to logic, see, for example: [10], [11], [12], [13], and [14]; and for set
theory, see, for example, [15], [16], [17], and [18].

2 Review of Basic Notions of Set Theory

When using set theory to address a given topic, first it is fitting to specify what
the universal set U is; that is the universe of discourse, the set to which all the
elements that may be considered belong. Only elements belonging to U can
belong to the different sets characterized within its framework. The empty set
– symbolized as ∅ – characterized within the framework of that U, is the set to
which any element belonging to U does not belong. Thus, there is no element
belonging to ∅.

In sections 2 and 3 uppercase letters such as F,G and H are used to de-
nominate each of the sets characterized within the framework of some U. The
denominations of the sets C1, C2 and C3 are reserved for a special use to be
discussed in section 4.

The complement, or complementary set, of the set F is represented by the

symbol F . Recall that all of the elements belonging to the U considered that
do not belong to F belong to the complement of any set F . Given this charac-

terization of F – that is, of the complement of any set F – the following results
are easily deduced:
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1. U = ∅

Given that all the elements belonging to U and not belonging to a specific
set belong to the complement of that set, and that all of the elements considered
when addressing a given topic belong to U, it is evident that no element belongs

to U. Therefore, U = ∅.

2. F ∩ F = ∅

Written out: Given that all the elements belonging to U that do not belong

to F belong to the complement of F (that is, F ), it is evident that F and F

have no elements in common (that is, no element belongs to both F and F .

Therefore, the intersection of F and F is equal to the empty set. (Recall that
all of the elements that belong both to one of those two sets and to the other
belong to the intersection of two sets.) In particular, U ∩∅ = ∅.

3. F ∪ F = U

Written out: Given that all the elements belonging to U that do not belong

to F belong to the complement of F (that is, F ), it is evident that the union

of F and F is equal to the universal set U. (Recall that any element belonging
to either of those two sets, or to both, belongs to the union of two sets.) In
particular, U ∪∅ = U.

If any element belonging to the set F also belongs to a set G, then F is
considered a subset of G. The relation between F and G can be established by
the following equality:

F = Sa(G)

In the right-hand member of the above equality, the uppercase letter S refers
to a Subset. The uppercase G placed in parentheses after Sa specifies that it
refers to a subset of set G. The subscript a of S indicates that Sa is one of the
different subsets of the set G. Recall that if n elements, for n = 0, 1, 2, 3, . . . ,
belong to any set G, there are 2n subsets of G. (The case n = 0 is that which
corresponds to G = ∅.) Another lowercase letter, such as b, c, d, e or f , could
have been selected instead of a. In this article, however, the lowercase letters
x and y are symbols reserved for special subscripts whose nature is specified in
sección 5.

Subsets of different sets are referred to by using different subscripts of S.
Consider, for example, the following equality:

Sa(F ) = Sb(G)

The left-hand member of the above equality is a particular subset of F and
the right-hand member of that equality is a particular subset of G. Of course,
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any subset of any set is also a set. The equality of Sa(F ) and Sb(G) specifies
that, considered as sets, these subsets are equal, or in other words, they are the
same set. The same elements belong to both.

A subset of any subset of any set H is also a specific subset of H.

Sb(Sa(H)) = Sc(H)

Recall that the equality F = Sa(G) is equivalent, from the standpoint of

logic, to G = Sb(F ); that is, both equalities have the same truth value. In other
words, the statement “F is equal to a certain subset of G” has the same truth

value as the statement “G is equal to a certain subset of F”. That is, each of
the statements is true if and only if the other is also true. Therefore, if one of
them is not true (i.e., false), then the other one is also false.

Consideration is given below to some sets that make it possible to note how,
in certain cases, the “laws” of set theory provided above are verified.

Take, for example, a universal set U to which the natural numbers 1, 2, 3,
4, 5, 6, 7, 8, 9 and 10 belong:

{U = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Let F,G and H be the following sets characterized within the framework of
that universal set U.

F = {2, 7}

G = {2, 5, 7}

H = {1, 2, 4, 5, 6, 7, 9}

Therefore,

F = {1, 3, 4, 5, 6, 8, 9, 10}

G = {1, 3, 4, 6, 8, 9, 10}

H = {3, 8, 10}

U = F ∪ F = G ∪G = H ∪H = U ∪∅

∅ = F ∩ F = G ∩G = H ∩H = U ∩∅

F = Sa(G); G = Sb(H); F = Sa(Sb(H)) = Sc(H)

G = Sd(F ); H = Se(G); H = Sf (F )
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The relation of complementation between two sets is symmetrical: The com-

plement of a set F is the set F if and only if the complement of the set F is the
set F . Therefore:

F = F

Written out: The operation of “double complementation” of any set F gen-
erates, as a result, the set F .

Below the symbols F and G will be used to denominate sets different from
those in the above example. Consider this equality:

F = Sa(G)

The above equality is equivalent, from the standpoint of logic, to the equality
below:

G = Sb(F )

Given that G = G, the following two equalities are equivalent:

F = Sa(G); G = Sb(F )

This result can be expressed also as follows: A set F is a subset of G if and

only if G is a subset of F .

3 Categorical Propositions

In this article, the same meaning is given to the terms “statement” and “proposi-
tion”. In the literature devoted to logic, references to “categorical propositions”
are found more frequently than to “categorical statements”.

Categorical propositions are assertions (about sets) which affirm or negate
that one set is totally or partially included in another.

There are four types of categorical propositions: 1. universal affirmative
propositions; 2) universal negative propositions; 3. particular affirmative propo-
sitions; and 4) particular negative propositions.

Consideration is given below to an example of each of these types of cate-
gorical propositions.

1) Example of a universal affirmative proposition:

All generals are brave.

According to the above proposition, each element belonging to a certain set
F also belongs to a certain set G. Those sets are:

F : generals; G: brave persons
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In general, universal affirmative propositions can be expressed as follows:

All F are G.

Using the terminology of set theory, the above proposition can be expressed
by either of the following two equalities, considered equivalent from the stand-
point of logic:

F = Sa(G); G = Sb(F )

2) Example of a negative universal negative proposition:

No general is brave.

In general, universal negative propositions can be expressed as follows:

No F is G.

According to the above proposition, no element belonging to the set denom-
inated F belongs to the set denominated G. Therefore, every element belonging

to F also belongs to G. Using the terminology of set theory, the preceding
proposition can be expressed by either of the following two equalities, equiva-
lent from the standpoint of logic:

F = Sa(G); G = SbF )

3) Example of a particular affirmative proposition:

Some generals are brave.

In general, particular affirmative propositions can be expressed as follows:

Some F are G.

According to the above proposition, some elements belonging to F are also
some of the elements belonging to G. Using the terminology of set theory, the
preceding proposition can be expressed by the following equality:

Sa(F ) = Sb(G)

4) Example of a particular negative proposition:

Some generals are not brave.

In general, particular negative propositions can be expressed as follows:
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Some F are not G.

According to the above proposition, some elements belonging to F are also

some of the elements belonging to G). Using the terminology of set theory, the
preceding proposition can be expressed by the following equality:

Sa(F ) = Sb(G)

4 Characterization of Categorical Syllogisms

A categorical syllogism is a type of reasoning composed of three categorical
propositions such that the third of them (denominated conclusion), can be
deduced, if the syllogism is valid, from the first two (denominated premises).

An example of a categorical syllogism is presented below. In this article the
first premise, the second premise and the conclusion of any categorical syllogism
are denominated, respectively, s1, s2 and s3. The letter “s” was used because it
is the first letter of the word “statement”.

s1: All engineers are pragmatic.
s2: Some engineers are wealthy.

∴ s3: Some wealthy persons are pragmatic.

The symbol ∴ means “therefore”.
The term for the predicate of the conclusion – in this case “pragmatic (per-

sons)” is denominated the “major term” in any categorical syllogism and cor-
responds to the set denominated C3 in this article. The term of the subject
of the conclusion – in this case “wealthy persons” is denominated the “minor
term” in any categorical syllogism and corresponds to a set denominated C1 in
this article. The premise in which the major term is contained is denominated
major premise. Here that is systematically the first premise s1 of each categor-
ical syllogism considered. The premise in which the minor term is contained is
denominated the minor premise. Here it is systematically the second premise s2
of each categorical syllogism considered. There is a term which is not contained
in the conclusion but it is contained in both premises. That term, “engineers”
in this case, is called the “middle term” and corresponds to the set denominated
C2 in this article.

For the first example of a categorical syllogism presented below, attention is
again given to what the sets C1, C2, and C3 are:

C1: wealthy persons C2: engineers C3: pragmatic persons

All of the categorical syllogisms of the same type as the syllogism considered
can be expressed in the following way:

s1: All C2 are C3.
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s2: Some C2 are C1.
∴ s3: Some C1 are C3.

Consider another example of a categorical syllogism:

s1: No intellectuals are superstitious.
s2: Some French persons are intellectuals.

∴ s3: Some French persons are not superstitious.

In this syllogism, the sets C1, C2 and C3 are the following:

C1: French persons C2: intellectuals C3: superstitious per-
sons

All of the categorial syllogisms of the same type as this last syllogism can
be expressed in the following way:

s1: No C2 are C3.
s2: Some C1 are C2.

∴ s3: Some C1 are not C3.

5 Using the SEM to Determine the Validity of
Categorical Syllogisms

Any categorical syllogism is considered valid if and only if its conclusion can be
deduced from its premises.

When symbolizing each premise of a categorical syllogism as an equality of
two sets, in the references to subsets, which are also sets, use is made of the
lowercase letters a, b, c, d, e and f , as subscripts of the symbol S for Subset (as
indicated in section 2). On the other hand, when symbolizing the conclusion
of each categorical syllogism as an equality of two sets, in the references to
subsets, use is made of the lowercase letters x and y as subscripts of S. These
subscripts – x and y – can be replaced, if pertinent, by lowercase letters such as
a, b, c, d, e and f . Consider, for example, one possible conclusion of a categorical
syllogism symbolized as the following equality of sets: F = Sx(H). Let us admit
that from the premises of the categorical syllogism considered, the following set
equality has been deduced: F = Se(H). Note that if in the former set equality
x is replaced by e, that equality is identical to the latter equality; that is, both
equalities are the same equality. In this case, given that the conclusion of the
syllogism considered has been deduced from its two premises, that syllogism is
considered valid.

Consider another possible conclusion of a categorical syllogism symbolized
as the following equality of two subsets: Sx(F ) = Sy(H). Admit that from the
premises of the categorical syllogism considered the following equality has been
deduced: Sc(F ) = Se(H). Note that if in the first of the latter two equalities
x is replaced by c, and y by e, that first equality is identical to the second
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one; that is, both equations are the same equality. In this case, given that the
conclusion of the syllogism considered has been deduced from its premises, that
syllogism is valid.

To apply the SEM, it must first be determined whether it is possible to
select, from the equalities of sets corresponding to the premises of the syllogism
considered, an equality one of whose members is C2 and another equality one of
whose members is a subset of C2. Suppose a) that one of those two equalities can
be selected, and b) that from them it is possible to deduce (as specified below
for each of the examples of categorical syllogisms examined in this section) a
set equality corresponding to the conclusion of the syllogism considered. Both
if supposition a) is false, and if supposition b) is false, it must be determined
whether from the set of equalities corresponding to the premises of the syllogism

considered, one of them can be selected such that one of its members is C2 and

another of its members is a subset of C2. Suppose that c) those two set equalities
can be selected, and that d) from them it is possible to deduce a set equality
corresponding to the conclusion of the syllogism considered. In this case, that
syllogism is deemed valid. Both if supposition c) is false, and if supposition d)
is false, the syllogism considered is not valid.

Even if it is proven that a) and b) are true, in which case the syllogism
considered is valid, it is worth determining whether suppositions c) and d) are
also valid, in which case another proof of validity of that syllogism has been
obtained.

The SEM is applied below to 16 examples of categorical syllogisms. The
first six were taken from [1].

In each of those examples the following is provided:
1) the categorical syllogism considered, expressed in natural language;
2) a specification of what the sets C1, C2, and C3 are;
3) an expression of the syllogism considered whose minor term, middle term and
major term were replaced by C1, C2, and C3, respectively;
4) the set equality (or if pertinent, both of the respective set equalities) corre-
sponding to each of its statements (to each of the premises and to the conclu-
sion); and
5) the application of the SEM to the syllogism considered.

Example 1

s1: All men are mortal.
s2: All Greeks are men.

∴ s3: All Greeks are mortal.
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C1: Greeks C2: men C3: mortal beings

s1: All C2 are C3. C2 = Sa(C3) (1); C3 = Sb(C2) (1′)

s2: All C1 are C2. C1 = Sc(C2) (2); C2 = Sa(C1) (2′)

∴ s3: All C1 are C3. C1 = Sx(C3) (3); C3 = Sy(C1) (3′)

Set equality (1) is selected because it includes C2 as one of its members,
and set equality (2) is selected because it includes a subset of C2 as one of its
members.

C2 = Sa(C3) (1)

C1 = Sc(C2) (2)

In (2), C2 is replaced by the right-hand member of equality (1):

C1 = Sc(Sa(C3)) = Se(C3)

From (1) and (2), the following equality was deduced:

C1 = Se(C3) (4)

If in (3) the subscript x is replaced by e, equality (3) – an expression of the
conclusion – is identical to equality (4), which was deduced from equalities (1)
and (2), expressions of the first and second premises, respectively. Therefore,
the syllogism considered is valid.

Another proof of validity of that syllogism is provided below.

Set equality (1′) is selected because it includes a subset of C2 as one of its

members, and (2′) is selected because it includes C2 as one of its members.

C3 = Sb(C2) (1′)

C2 = Sd(C1) (2′)

In (1′), C2 is replaced by the right-hand member of equality (2′):

C3 = Sb(Sd(C1)) = Sf (C1)

From (1′) and (2′) the following equality was deduced:

C3 = Sf (C1) (4′)

If in (3′) the subscript y is replaced by f , equality (3′) – an expression of
the conclusion – is identical to equality (4′), which was deduced from equalities
(1′) and (2′), expressions of the first and second premises, respectively. There-
fore, another proof of the validity of the syllogism considered has been obtained.
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Example 2

s1: No men are perfect.
s2: All Greeks are men.

∴ s3: No Greeks are perfect.

C1: Greeks C2: men C3: perfect beings

s1: No C2 are C3. C2 = Sa(C3) (1); C3 = Sb(C2) (1′)

s2: All C1 are C2. C1 = Sc(C2) (2); C2 = Sd(C1) (2′)

∴ s3: No C1 are C3. C1 = Sx(C3) (3); C3 = Sy(C1) (3′)

Set equality (1) is selected because it includes C2 as one of its members,
and set equality (2) is selected because it includes a subset of C2 as one of its
members.

C2 = Sa(C3) (1)

C1 = Sc(C2) (2)

In (2), C2 is replaced by the right-hand member of equality (1):

C1 = Sc(Sa(C3)) = Se(C3)

From (1) and (2), the following equality was deduced:

C1 = Se(C3) (4)

If in (3) the subscript x is replaced by e, equality (3) – an expression of the
conclusion – is identical to equality (4), which was deduced from equalities (1)
and (2), expressions of the first and second premises, respectively. Therefore,
the syllogism considered is valid.

Another proof of validity of that syllogism is provided below.

Set equality (1′) is selected because it includes a subset of C2 as one of its

members, and set equality (2′) is selected because it includes C2 as one of its
members.

C3 = Sb(C2) (1′)

C2 = Sd(C1) (2′)

In (1′), C2 is replaced by the right-hand member of equality (2′):

C3 = Sb(Sd(C1)) = Sf (C1)

From (1′) and (2′) the following equality was deduced:

C3 = Sf (C1) (4′)
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If in (3′) the subscript y is replaced by f , equality (3′) – an expression of
the conclusion – is identical to equality (4′), which was deduced from equalities
(1′) and (2′), expressions of the first and second premises, respectively. There-
fore, another proof of the validity of the syllogism considered has been obtained.

Example 3

s1: All philosophers are wise.
s2: Some Greeks are philosophers.

∴ s3: Some Greeks are wise.

C1: Greeks C2: philosophers C3: wise persons

s1: All C2 are C3. C2 = Sa(C3) (1); C3 = Sb(C2) (1′)

s2: Some C1 are C2. Sc(C1) = Sd(C2) (2)

∴ s3: Some C1 are C3. Sx(C1) = Sy(C3) (3)

Set equality (1) is selected because it includes C2 as one of its members,
and set equality (2) is selected because it includes a subset of C2 as one of its
members.

C2 = Sa(C3) (1)

Sc(C1) = Sd(C2) (2)

In (2), C2 is replaced by the right-hand member of equality (1):

Sc(C1) = Sd(Sa(C3)) = Se(C3)

From (1) and (2), the following equality was deduced:

Sc(C1) = Se(C3) (4)

If in (3) subscripts x and y are replaced by c and e, respectively, equality
(3) – an expression of the conclusion – is identical to equality (4), which was
deduced from equalities (1) and (2), expressions of the first and second premises,
respectively. Therefore, the syllogism considered is valid.

Example 4

s1: No philosophers are wicked.
s2: Some Greeks are philosophers.

∴ s3: Some Greeks are not wicked.

C1: Greeks C2: philosophers C3: wicked persons

s1: No C2 are C3. C2 = Sa(C3) (1); C3 = Sb(C2) (1′)

s2: Some C1 are C2. Sc(C1) = Sd(C2) (2)

∴ s3: Some C1 are not C3. Sx(C1) = Sy(C3) (3)
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Set equality (1) is selected because it includes C2 as one of its members,
and set equality (2) is selected because it includes a subset of C2 as one of its
members.

C2 = Sa(C3) (1)

Sc(C1) = Sd(C2) (2)

In (2), C2 is replaced by the right-hand member of equality (1):

Sc(C1) = Sd(Sa(C3)) = Se(C3)

From (1) and (2), the following equality was deduced:

Sc(C1) = Se(C3) (4)

If in (3) subscripts x and y are replaced by c and e, respectively, equality
(3) – an expression of the conclusion – is identical to equality (4), which was
deduced from equalities (1) and (2), expressions of the first and second premises,
respectively. Therefore, the syllogism considered is valid.

Example 5

s1: All Greeks are men.
s2: Some mortals are not men.

∴ s3: Some mortals are not Greeks.

C1: mortal beings C2: men C3: Greeks

s1: All C3 are C2. C3 = Sa(C2) (1); C2 = Sb(C3) (1′)

s2: Some C1 are not C2. Sc(C1) = Sd(C2) (2)

∴ s3: Some C1 are not C3. Sx(C1) = Sy(C3) (3)

Set equality (1′) is selected because it includes C2 as one of its members,

and set equality (2) is selected because it includes a subset of C2 as one of its
members.

C2 = Sb(C3) (1′)

Sc(C1) = Sd(C2) (2)

In (2), C2 is replaced by the right-hand member of equality (1′):

Sc(C1) = Sd(Sb(C3)) = Se(C3)

From (1′) and (2), the following equality was deduced:

Sc(C1) = Se(C3) (4)
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If in (3) subscripts x and y are replaced by c and e, respectively, equality (3)
– an expression of the conclusion – is identical to equality (4), which was de-
duced from equalities (1′) and (2), expressions of the first and second premises,
respectively. Therefore, the syllogism considered is valid.

Example 6

s1: Some men are not Greeks.
s2: All men are mortal.

∴ s3: Some mortals are not Greeks.

C1: mortal beings C2: men C3: Greeks

s1: Some C2 are not C3. Sa(C2) = Sb(C3) (1)

s2: All C2 are C1. C2 = Sc(C1) (2); C1 = Sd(C2) (2′)

∴ s3: Some C1 are not C3. Sx(C1) = Sy(C3) (3)

Set equality (1) is selected because it includes a subset of C2 as one of its
members, and (2) is selected because it includes C2 as one of its members.

Sa(C2) = Sb(C3) (1)

C2 = Sc(C1) (2)

In (1), C2 is replaced by the right-hand member of equality (2):

Sa(Sc(C1)) = Se(C1) = Sb(C3)

From (1) and (2), the following equality was deduced:

Se(C1) = Sb(C3) (4)

If in (3) subscripts x and y are replaced by e and b, respectively, equality
(3) – an expression of the conclusion – is identical to equality (4), which was
deduced from equalities (1) and (2), expressions of the first and second premises,
respectively. Therefore, the syllogism considered is valid.

Example 7

s1: All engineers are pragmatic.
s2: Some engineers are wealthy.

∴ s3: Some wealthy persons are pragmatic.

C1: wealthy persons C2: engineers C3: pragmatic persons

s1: All C2 are C3. C2 = Sa(C3) (1); C3 = Sb(C2) (1′)

s2: Some C2 are C1. Sc(C2) = Sd(C1) (2)

∴ s3: Some C1 are C3. Sx(C1) = Sy(C3) (3)
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The premise s2 “Some C2 are C1” can also be expressed as “Some C1 are
C2”. In that case it can be noted that the symbolic expressions of the cate-
gorical propositions s1, s2 and s3 of the syllogism in example 7 are the same,
respectively, as the symbolic expressions of the categorical propositions s1, s2
and s3 of the syllogism in example 3. It was proven that the latter syllogism is
valid. Therefore, the syllogism considered in example 7 is valid.

Example 8

s1: No intellectuals are superstitious.
s2: Some French persons are intellectuals.

∴ s3: Some French persons are not superstitious.

C1: French persons C2: intellectuals C3: superstitious per-
sons

s1: No C2 are C3. C2 = Sa(C3) (1); C3 = Sb(C2) (1′)

s2: Some C1 are C2. Sc(C1) = Sd(C2) (2)

∴ s3: Some C1 are not C3. Sx(C1) = Sy(C3) (3)

The symbolic expressions of the categorical propositions s1, s2 and s3 of the
syllogism in example 8 are the same, respectively, as the symbolic expressions of
the categorical propositions s1, s2 and s3 of the syllogism in example 4. It was
proven that the latter syllogism is valid. Therefore, the syllogism considered in
example 8 is valid.

Example 9

s1: All men are rational.
s2: All Spaniards are men.

∴ s3: All Spaniards are rational.

C1: Spaniards C2: men C3: rational men

s1: All C2 are C3. C2 = Sa(C3) (1); C3 = Sb(C2) (1′)

s2: All C1 are C2. C1 = Sc(C2) (2); C2 = Sd(C1) (2′)

∴ s3: All C1 are C3. C1 = Sx(C3) (3); C3 = Sy(C1) (3′)

Set equality (1) is selected because it includes C2 as one of its members,
and set equality (2) is selected because it includes a subset of C2 as one of its
members.

C2 = Sa(C3) (1)

C1 = Sc(C2) (2)
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In (2), C2 is replaced by the right-hand member of equality (1):

C1 = Sc(Sa(C3)) = Se(C3)

From (1) and (2), the following equality was deduced:

C1 = Se(C3) (4)

If in (3) the subscript x is replaced by e, equality (3) – an expression of the
conclusion – is identical to equality (4), which was deduced from equalities (1)
and (2), expressions of the first and second premises, respectively. Therefore,
the syllogism considered is valid.

Another proof of validity of that syllogism is provided below.

Set equality (1′) is selected because it includes a subset of C2 as one of its

members, and (2′) is selected because it includes C2 as one of its members.

C3 = Sb(C2) (1′)

C2 = Sd(C1) (2′)

In (1′), C2 is replaced by the right-hand member of equality (2′):

C3 = Sb(Sd(C1)) = Sf (C1)

From (1′) and (2′) the following equality was deduced:

C3 = Sf (C1) (4′)

If in (3′) the subscript y is replaced by f , equality (3′) – an expression of
the conclusion – is identical to equality (4′), which was deduced from equalities
(1′) and (2′), expressions of the first and second premises, respectively. There-
fore, another proof of the validity of the syllogism considered has been obtained.

Example 10

s1: All sculptors are artists.
s2: No artists are fossils.

∴ s3: No fossils are sculptors.

C1: fossils C2: artists C3: sculptors

s1: All C3 are C2. C3 = Sa(C2) (1); C2 = Sb(C3) (1′)

s2: No C2 are C1. C2 = Sc(C1) (2); C1 = Sd(C2) (2′)

∴ s3: No C1 are C3. C1 = Sx(C3) (3); C3 = Sy(C1) (3′)

16



Set equality (1) is selected because it includes a subset of C2 as one of its
members, and set equality (2) is selected because it includes C2 as one of its
members.

C3 = Sa(C2) (1)

C2 = Sc(C1) (2)

In (1), C2 is replaced by the right-hand member of equality (2):

C3 = Sa(Sc(C1)) = Se(C1)

From (1) and (2), the following equality was deduced:

C3 = Se(C1) (4)

If in (3′) the subscript y is replaced by e, equality (3′) – an expression of the
conclusion – is identical to equality (4), which was deduced from equalities (1)
and (2), expressions of the first and second premises, respectively. Therefore,
the syllogism considered is valid.

Another proof of validity of that syllogism is provided below.

Set equality (1′) is selected because it includes C2 as one of its members,

and (2′) is selected because it includes a subset of C2 as one of its members.

C2 = Sb(C3) (1′)

C1 = Sd(C2) (2′)

In (2′), C2 is replaced by the right-hand member of equality (1′):

C1 = Sa(Sb(C3)) = Sf (C3)

From (1′) and (2′) the following equality was deduced:

C1 = Sf (C3) (4′)

If in (3) the subscript x is replaced by f , equality (3) – an expression of
the conclusion – is identical to equality (4′), which was deduced from equalities
(1′) and (2′), expressions of the first and second premises, respectively. There-
fore, another proof of the validity of the syllogism considered has been obtained.

Example 11

s1: No humanists are corrupt.
s2: All despots are corrupt.

∴ s3: No despots are humanists.
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C1: despots C2: corrupt persons C3: humanists

s1: No C3 are C2. C3 = Sa(C2) (1); C2 = Sb(C3) (1′)

s2: All C1 are C2. C1 = Sc(C2) (2); C2 = Sd(C1) (2′)

∴ s3: No C1 are C3. C1 = Sx(C3) (3); C3 = Sy(C1) (3′)

Set equality (1′) is selected because it includes C2 as one of its members,
and set equality (2) is selected because it includes a subset of C2 as one of its
members.

C2 = Sb(C3) (1′)

C1 = Sc(C2) (2)

In (2), C2 is replaced by the right-hand member of equality (1′):

C1 = Sc(Sb(C3)) = Se(C3)

From (1′) and (2), the following equality was deduced:

C1 = Se(C3) (4)

If in (3) the subscript x is replaced by e, equality (3) – an expression of the
conclusion – is identical to equality (4), which was deduced from equalities (1′)
and (2), expressions of the first and second premises, respectively. Therefore,
the syllogism considered is valid.

Another proof of validity of that syllogism is provided below.

Set equality (1) is selected because it includes a subset of C2 as one of its

members, and (2′) is selected because it includes C2 as one of its members.

C3 = Sa(C2) (1)

C2 = Sd(C1) (2′)

In (1), C2 is replaced by the right-hand member of equality (2′):

C3 = Sa(Sd(C1)) = Sf (C1)

From (1) and (2) the following equality was deduced:

C3 = Sf (C1) (4′)

If in (3′) the subscript y is replaced by f , equality (3′) – an expression of
the conclusion – is identical to equality (4′), which was deduced from equalities
(1) and (2′), expressions of the first and second premises, respectively. There-
fore, another proof of the validity of the syllogism considered has been obtained.
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Example 12

s1: Some mammals are dogs.
s2: All mammals are vertebrates.

∴ s3: Some vertebrates are dogs.

C1: vertebrates C2: mammals C3: dogs

s1: Some C2 are C3. Sa(C2) = Sb(C3) (1)

s2: All C2 are C1. C2 = Sc(C1) (2); C1 = Sd(C2) (2′)

∴ s3: Some C1 are C3. Sx(C1) = Sy(C3) (3)

Set equality (1) is selected because one of its members is a subset of C2, and
set equality (2) is selected because one of its members is C2.

Sa(C2) = Sb(C3) (1)

C2 = Sc(C1) (2)

In (1), C2 is replaced by the right-hand member of equality (2):

Sa(Sc(C1)) = Sb(C3)

From (1) and (2), the following equality was deduced:

Se(C1) = Sb(C3) (4)

If in (3) subscripts x and y are replaced by e and b, respectively, equality
(3) – an expression of the conclusion – is identical to equality (4), which was
deduced from (1) and (2), expressions of the first and second premises, respec-
tively. Therefore, the syllogism considered is valid.

Example 13

s1: No artists are Neo-Kantians.
s2: Some Germans are Neo-Kantians.

∴ s3: Some Germans are not artists.

C1: Germans C2: Neo-Kantians C3: artists

s1: No C3 are C2. C3 = Sa(C2) (1); C2 = Sb(C3) (1′)

s2: Some C1 are C2. Sc(C1) = Sd(C2) (2)

∴ s3: Some C1 are not C3. Sx(C1) = Sy(C3) (3)

Set equality (1′) is selected because one of its members is C2, and set equality
(2) is selected because one of its members is a subset of C2 .

C2 = Sb(C3) (1′)

Sc(C1) = Sd(C2) (2)
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In (2), C2 is replaced by the right-hand member of equality (1′):

Sc(C1) = Sd(Sb(C3)) = Se(C3)

From (1′) and (2), the following equality was deduced:

Sc(C1) = Se(C3) (4)

If in (3) subscripts x and y are replaced by c and e, respectively, equality (3)
– an expression of the conclusion – is identical to equality (4), which was de-
duced from equalities (1′) and (2), expressions of the first and second premises,
respectively. Therefore, the syllogism considered is valid.

Example 14

s1: All poets are visionaries.
s2: All prophets are visionaries.

∴ s3: Some prophets are poets.

C1: prophets C2: visionaries C3: poets

s1: All C3 are C2. C3 = Sa(C2) (1); C2 = Sb(C3) (1′)

s2: All C1 are C2. C1 = Sc(C2) (2); C2 = Sa(C1) (2′)

∴ s3: Some C1 are C3. Sx(C1) = Sy(C3) (3)

It is not possible to select two set equalities such that a) one of them corre-
sponds to one of the premises and one of the members is C2, and b) the other
equality corresponds to the other premise and one of its members is a subset C2.
In effect, requirement a) is not satisfied in any of the equalities corresponding
to the premises; nor is it possible to select two set equalities such that c) one

of them corresponds to one of the premises and one of its members is C2, and
d) the other equality corresponds to the other premise and one of its members

is a subset of C2. In effect, requirement d) is not satisfied in any of equalities
corresponding to the premises. Therefore, this syllogism considered is not valid.

Example 15

s1: Some landowners are not egotists.
s2: No philanthropists are egotists.

∴ s3: Some philanthropists are landowners.

C1: philanthropists C2: egotists C3: landowners

s1: Some C3 are not C2. Sa(C3) = Sb(C2) (1)

s2: No C1 are C2. C1 = Sc(C2) (2); C2 = Sd(C1) (2′)

∴s3: Some C1 are C3. Sx(C1) = Sy(C3) (3)
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It is not possible to select two set equalities such that a) one of them cor-
responds to one of premises and one of its members is C2, and b) the other
equality corresponds to the other premise and one of its members is a subset
of C2. In effect, requirement a) is satisfied in equality (2′) corresponding to the
second premise, but requirement b) is not satisfied in equality (1) corresponding
to the first premise which does not have a member that is a subset of C2. Nor
is it possible to select two set equalities such that c) one of them corresponds

to one of the premises and one of its members is C2, and d) the other equality

corresponds to the other premise and one of its members is a subset of C2. In
effect, requirement c) is not satisfied in any of equalities corresponding to the

premises because C2 is not a member of any of them. Therefore, the syllogism
considered is not valid.

Example 16

s1: Some philosophers are humanists.
s2: No humanists are egotists.

∴ s3: Some philosophers are egotists.

C1: philosophers C2: humanists C3: egotists

s1: Some C1 are C2. Sa(C1) = Sb(C2) (1)

s2: No C2 are C3. C2 = Sc(C3) (2); C3 = Sd(C2) (2′)

∴ s3: Some C1 are C3. Sx(C1) = Sy(C3) (3)

Set equality (1) is selected because one of its members is a subset of C2, and
(2) is selected because one of its members is C2.

Sa(C1) = Sb(C2) (1)

C2 = Sc(C3) (2)

In (1), C2 is replaced by the right-hand member of equality (2):

Sa(C1) = Sb(Sc(C3) = Se(C3)

From (1) and (2), the following equality was deduced:

Sa(C1) = Se(C3) (4)

If in (3) the subscripts x and y are replaced by a and e, respectively, an
equality which is identical or equivalent to (4) is not obtained. It is not possible
to deduce equality (4), corresponding to the conclusion, from set equalities (1)
and (2) corresponding to the first premise and second premise, respectively. Nor
is it possible to select two set equalities such that a) one of them corresponds

to one of the premises and one of its members is C2, and b) the other equality
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corresponds to the other premise and one of its members is a subset of C2. In
effect, requirement b) is satisfied in equality (2′) corresponding to the second
premise, but requirement a) is not satisfied because equality (1) corresponding

to the first premise does not include C2 as one of its members. Therefore, the
syllogism considered is not valid.

6 Discussion and Perspectives

The authors are conducting a research program whose main objectives are the
following:

(1) show the natural continuity existing in different logics – classical bivalent
logic and diverse variants of several non-classical logics – among different calculi,
such as propositional calculus and predicate calculus (expressed in terms of set
theory).

(2) specify how classical logic can be viewed as a “limit case” of certain
variants to be considered of several non-classical logics. To become familiar
with what is meant by “limit case” and how this study is being implemented,
see (CFL) [19].

One part of the tasks focusing on achieving objective (1) consists of present-
ing methods to evaluate the validity – or lack of it – of types of reasoning with
different degrees of complexity. The possibility of automating those methods to
use them in disciplines such as control engineering and artificial intelligence is
of particular interest.

Categorical syllogisms are types of reasoning with a low level of complexity
which have played an important role in logic, from historical and instructional
standpoints. For this reason, the authors have chosen them as a preliminary
“testbed” for different methods to determine the validity of types of reasoning
such as those specified in this article, and such as those presented earlier [8],
[9]. Of course, the complexity of these methods will increase when considering
types of reasoning more complex than categorical syllogisms.

Future work will address the modification of the above methods so that not
only will they be “instruments” to determine the validity – or lack of it – of
different types of reasoning, but they will also be resources which will make
possible the automatic generation of valid types of reasoning given different sets
of data.
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