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Abstract

A presentation is provided of a method – the Membership Table Method
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makes it possible for each syllogism to be assigned a specific set. If this set
is equal to the universal set U, then the categorical syllogism considered
is valid, and if that set is not equal to U, then that categorical syllogism is
not valid. In other words, any categorical syllogism is valid if and only if
its respective set, according to the MTM, is equal to the universal set U.
The conclusion of a valid categorical syllogism whose premises are true is
true.
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1 Introduction

From historical and educational standpoints, forms of reasoning known as syllo-
gisms, especially categorical syllogisms, have been relevant in the development
of logic.

The objective of this article is to present a method to determine the valid-
ity of categorical syllogisms: the membership table method (MTM). It can be
applied more simply and systematically than other pre-existing methods. Up
until now one of the most commonly used approaches to determine the validity
of categorical syllogisms has been that of using diverse types of diagrams [1],
[2], [3], [4], [5], and [6]. A previous contribution by the authors of this article,
with that objective, can be classified within that approach [7].

A clear understanding of this article requires only a basic knowledge of the
propositional calculus of classical logic and of set theory. For an introduction
to classical logic, one may consult, for example: [8], [9], [10], [11], and [12]. On
set theory, one may consult, for example, [13], [14], [15], and [16].

2 A Correspondence between Operations of Pro-
positional Calculus and Operations of Set The-
ory

Propositional variables – that is, variables that can be replaced with propositions
– are usually referred to as p, q, r, etc. Given that in other articles related to this
one the letter p will be used to refer to a probability and diverse probabilities
will be denominated p1, p2, p3, etc., to prevent confusion, in this article these
propositional variables will be symbolized as follows: q1, q2, q3, etc. (with some
exceptions as specified in section 5). In addition, taking advantage of a “license”
used by a number of authors, q1, q2, q3, etc. will be referred to as “propositions”.
Thus, statements such as “q1 is true” and “q2 is false” should be interpreted
respectively in the following way: “Admit that q1 has been replaced with a true
proposition” and “Admit that q2 has been replaced with a false proposition”.
If a sole proposition is considered, the subscript can be eliminated and the
proposition symbolized as q.

In set theory, the universal set, or the universe of discourse, to which all the
elements that may be considered when referring to a given topic belong, will be
symbolized as U.

The diverse sets characterized within the framework of the universal set U
will be denominated C1, C2, C3, etc. (with some exceptions to be specified in
section 6). If only one of those sets is considered, the subscript can be eliminated
and the set symbolized as C.

The (monadic) logical connective of negation in propositional calculus will
be symbolized by a horizontal bar above the negated proposition. Thus, the
symbol q – that is, not q – will represent the negation of that proposition q.

All the elements of the set U considered that do not belong to C belong to
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the complement of the set C. The complement of C is symbolized as C. In this
article the symbol corresponding to the operator of complementation of a set
is placed above its operand. This operand is the set C on which that operator

acts, thus generating the complement of C (that is, C), which is another set.
Given that all of the elements which may be considered when dealing with

a particular topic belong to the set U, no element belongs to the complement of
U, known as the empty set. It is symbolized as ∅.

The relation between the universal set U and the corresponding empty set
can be expressed by the following equality:

U = ∅ (1)

Given that a) all the elements belonging to U that do not belong to C belong
to the complement of any set C and that b) no element of the corresponding U
belongs to the set ∅, it is obvious that

∅ = U (2)

Given that because of (2), ∅ and U are the same set, their complements
must also be equal:

∅ = U (3)

If, in (3), U is replaced with ∅, admissible given the equality (1), the follow-
ing equation is obtained:

∅ = ∅ (4)

In addition, given that because of (1), U and ∅ are the same set, their
complements will also be equal:

U = ∅ (5)

According to (2), ∅ can be replaced in (5) with U. Thus the following
equation is obtained:

U = U (6)

In general, the complement of the complement of any set C is equal to C:

C = C (7)

The truth tables (a) of q, q and q, and the membership tables (b) of C, C

and C are presented in figure 1.
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q q q

0 1 0
1 0 1

(a) Truth tables of q (that is, of the negation of q) and of q (that is, of the negation of the
negation of q, or of the “double negation” of q).

C C C

0 1 0
1 0 1

(b) Membership tables of C (that is, of the complement of C) and of C (that is, of the
complement of the complement of C).

Figure 1: a) Truth tables of q and q, and b) membership tables of C and C.

In figure 1a, the presence of a 0 in the column corresponding to a proposition,
such as q, means that the proposition is considered false. The presence of a 1
in the column corresponding to a proposition means that the proposition is
considered true. Classical logic is bivalent, in the sense that there are only
two possible truth values for any proposition: It is true or it is false. In that
bivalent logic, the negation of any true proposition is a false proposition, and
the negation of any false proposition is a true proposition.

The first row of the truth tables represented in figure 1a is composed of the
numerical sequence 0, 1, 0. It should be interpreted in the following way: If the
proposition q is false, then its negation q is true and the negation of q (that is,
q) is true.

Note in figure 1a that the columns corresponding to q and q are identical:
asserting q is equivalent to asserting q.

In figure 1b, the set C mentioned above is any set characterized within the
framework of any universal set U; that is, any element belonging to C is an
element belonging to that U.

In figure 1b, the presence of a 0 in a column corresponding to a set, such as
C, means the supposition that any element belonging to U does not belong to
that set. The presence of a 1 in the column corresponding to a set means the
supposition that any element belonging to U does belong to that set. In classic
set theory, if any element of U belongs to C then that element does not belong

to C, and if that element of U does not belong to C then that element does

belong to C.
The first row of the membership tables in figure 1b is composed of the

numerical sequence 0, 1, 0. It should be interpreted as follows: If any element
of U (that is, belonging to U) does not belong to C, then that element does

belong to the complement of C (i.e., C) and does not belong to the complement

of C (i.e., C).
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The second row of the membership tables in figure 1b is composed of the
numerical sequence 1, 0, 1. It should be interpreted as follows: If any element
of U belongs to C, then that element does not belong to the complement of C

(i.e., C) and does belong to the complement of C (i.e., C).

Note that the columns corresponding to C and to C are identical: C = C,
as seen in (7); the double operation of complementation of a set results in the
set C itself.

The first and the second rows of the truth tables in figure 1a are the same,
respectively, as the first and second rows of the membership tables in figure 1b.
That makes it possible to establish a) the correspondence of the proposition q

with the set C, b) the correspondence of the proposition q with the set C, c) the

correspondence of the proposition q with the set C, and d) the correspondence
of the connective of negation in propositional calculus with the operator of
complementation in set theory.

The logical connective of conjunction of two propositions is symbolized as
∧. The proposition q1 ∧ q2 – the conjunction of the propositions q1 and q2 – is
read as: “q1 and q2”.

The operator of the intersection of two sets is symbolized as ∩. The set
which is the intersection of the sets C1 and C2 – two sets characterized within
the framework of some universal set U – is symbolized as C1 ∩ C2.

Figure 2 presents a) the truth table of the proposition q1 ∧ q2, and b) the
membership table of the set C1 ∩ C2.

q1 q2 q1 ∧ q2

0 0 0
0 1 0
1 0 0
1 1 1

(a) Truth table of the proposition q1 ∧ q2.

C1 C2 C1 ∩ C2

0 0 0
0 1 0
1 0 0
1 1 1

(b) Membership table of the set C1 ∩ C2.

Figure 2: a) Truth table of q1 ∧ q2; and b) membership table of C1 ∩ C2.

In the truth table of q1 ∧ q2 (in figure 2a), it is seen that only when both q1
and q2 are true, is q1 ∧ q2 also true. This case corresponds to the fourth row
in that truth table, which is composed of the numerical sequence 1, 1, 1; if and
only if q1 and q2 are true, is q1 ∧ q2 also true.
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In the membership table C1 ∩ C2 (in figure 2b), it is seen that only when
any element of U belongs both to C1 and to C2, does that element belong to
C1 ∩ C2. This case corresponds to the fourth row of that membership table,
which is composed of the numerical sequence 1, 1, 1; if and only if any element
of U belongs both to C1 and to C2, does that element also belong to C1 ∩ C2.

Note, in figure 2, the equality of the first, second, third and fourth rows,
respectively, in figure 2a and figure 2b. This makes it possible to establish
a correspondence between a) the propositions q1 and q2 and the sets C1 and
C2, respectively; b) the proposition q1 ∧ q2 (the conjunction of q1 and q2) and
the set C1 ∩ C2 (the set which is the intersection of C1 and C2); and c) the
logical connective of conjunction in propositional calculus (∧) and the operator
of intersection in set theory (∩).

The logical connective of disjunction of two propositions will be symbolized
as ∨. The proposition q1 ∨ q2 – the disjunction of the propositions q1 and q2 –
is read as: “q1 or q2”.

The operator of union of two sets is symbolized as ∪. The set which is the
union of the sets C1 and C2 – two sets characterized within the framework of
some universal set U – is symbolized as C1 ∪ C2.

Figure 3 presents a) the truth table of the proposition q1 ∨ q2, and b) the
membership table of C1 ∪ C2.

q1 q2 q1 ∨ q2

0 0 0
0 1 1
1 0 1
1 1 1

(a) Truth table of the proposition q1 ∨ q2.

C1 C2 C1 ∪ C2

0 0 0
0 1 1
1 0 1
1 1 1

(b) Membership table of the set C1 ∪ C2.

Figure 3: a) Truth table of q1 ∨ q2; and b) membership table of C1 ∪ C2.

Note in the truth table in figure 3a that only when both q1 and q2 are false
(in the first row of that table) is q1∨q2 false. Note also in the membership table
in figure 3b that only when any element of U belongs neither to C1 nor to C2

(in the first row of that table) does that element not belong to C1 ∪ C2.
Note that the first, second, third and fourth rows in figure 3a are the same,

respectively, as the first, second, third and fourth rows in 3b. Therefore, a
correspondence can be established between a) the propositions q1 and q2 and
the sets C1 and C2, respectively; b) the proposition q1 ∨ q2 and the set C1 ∪C2;
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and c) the logical connective of disjunction in propositional calculus and the
operator of union in set theory.

The logical connective of material implication in propositional calculus will
be represented as →. The proposition q1 → q2 is read as: “If q1, then q2”. The
proposition q1 is known as the antecedent of q1 → q2 and the proposition q2 is
known as the consequent of that proposition.

The operator of the material implication in set theory will be represented as
−→| . The result of that operator acting on the ordered pair of sets {C1, C2} is
the set C1 −→| C2.

The proposition q2 → q1 is read as: “If q2, then q1”. The proposition q2
is known as the antecedent of q2 → q1 and the proposition q1 is known as the
consequent of that proposition.

The result of the operator of material implication acting on the ordered pair
of sets {C2, C1} is equal to the set C2 −→| C1.

Figure 4 presents a) the truth tables of the propositions q1 → q2 and q2 → q1;
and b) the membership tables of the sets C1 −→| C2 and C2 −→| C1.

q1 q2 q1 → q2 q2 → q1

0 0 1 1
0 1 1 0
1 0 0 1
1 1 1 1

(a) Truth tables of q1 → q2 and q2 → q1.

C1 C2 C1 −→| C2 C2 −→| C1

0 0 1 1
0 1 1 0
1 0 0 1
1 1 1 1

(b) Membership tables of C1 −→| C2 and C2 −→| C1.

Figure 4: a) Truth tables of the propositions q1 → q2 and q2 → q1, and mem-
bership tables of the sets C1 −→| C2 and C2 −→| C1.

Note in figure 4a that the only case in which the proposition q1 → q2 is false
(in the third row in the truth table of that proposition) is that in which the
antecedent q1 is true and the consequent q2 is false. In the other three cases,
q1 → q2 is true. Note also in figure 4b, that the only case in which any element
whatsoever of the universal set U does not belong to the set C1 −→| C2 (in
the third row of the membership table of that set) is that in which the element
belongs to C1 and does not belong to C2. In the other three cases, that element
does belong to C1 −→| C2.

Note in figure 4a that the only case in which the proposition q2 → q1 is false
(in the second row in the truth table of that proposition) is that in which the
antecedent q2 is true and the consequent q1 is false. In the other three cases,
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q2 → q1 is true. Note also in figure 4b that the only case in which any element
whatsoever of the universal set U does not belong to the set C2 −→| C1 (in the
second row of the membership table of that set) is that in which that element
belongs to C2 and does not belong to C1. In the other three cases, that element
does belong to C2 −→| C1.

Observe that the first, second, third and fourth rows of the truth table of
q1 → q2 are the same respectively, as the first, second, third and fourth rows of
the membership table of C1 −→| C2. Observe also that the first, second, third
and fourth rows of the truth table of q2 → q1 are the same, respectively, as
the first, second, third and fourth rows of the membership table of C2 −→| C1.
Therefore, a correspondence may be established between a) the propositions q1
and q2 and the sets C1 and C2, respectively; b) the propositions q1 → q2 and
q2 → q1 and the sets C1 −→| C2 and C2 −→| C1, respectively; and c) the logical
connective of material implication in propositional calculus and the operator of
material implication in set theory.

The logical connective of material bi-implication, or of logical equivalence in
propositional calculus, will be represented as←→. The proposition q1 ←→ q2 is
read as: “The proposition q1 is logically equivalent to the proposition q2”. The
operator of material bi-implication in set theory will be represented as ←→| .

Figure 5 presents a) the truth table of q1 ←→ q2, and b) the membership
table of the set C1 ←→| C2

q1 q2 q1 ←→ q2

0 0 1
0 1 0
1 0 0
1 1 1

(a) Truth table of q1 ←→ q2.

C1 C2 C1 ←→| C2

0 0 1
0 1 0
1 0 0
1 1 1

(b) Membership table of the set C1 ←→| C2.

Figure 5: a) Truth table of q1 ←→ q2 and b) membership table of the set
C1 ←→| C2.

In figure 5a it is seen that the two cases in which the proposition q1 ←→ q2 is
true are those (in the first and fourth rows of the truth table of that proposition)
in which q1 and q2 have the same value of truth. In the case represented in the
first row both q1 and q2 are false, and in the case represented in the fourth row
both q1 and q2 are true.

In figure 5b it is seen that the two cases in which any element whatsoever of
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the universal set U considered belongs to the set C1 ←→| C2 are the following:
a) in the case in which the element belongs neither to C1 nor to C2 (represented
in the first row of the membership table of that set) and b) the case in which
that element belongs both to C1 and to C2 (represented in the fourth row of
the membership table of that set).

Observe that the first, second, third and fourth rows of the truth table of
q1 ←→ q2 are the same, respectively, as the first, second, third and fourth rows of
the membership table of C1 ←→| C2. Thus a correspondence can be established
between a) the propositions q1 and q2 and the sets C1 and C2, respectively; b)
the proposition q1 ←→ q2 and the set C1 ←→| C2; and c) the logical connective
of material bi-implication in propositional calculus and the operator of material
bi-implication in set theory.

For propositions resulting from the use of connectives, such as q1 → q2 or
q3 ∨ q4, it can be suitable to express them in parentheses as (q1 → q2) and
(q3 ∨ q4), respectively. Thus, if a connective is used with those propositions
to obtain another proposition, it is clear how that has operated. For example,
(q1 → q2) → (q3 ∨ q4) is the proposition of a conditional nature: “If q1 → q2,
then q3 ∨ q4”, in which q1 → q2 is the antecedent, and q3 ∨ q4 is the consequent.
The proposition (q1 → q2) → (q3 ∨ q4) has been obtained by the action of the
connective of material implication on the following ordered pair of propositions
{(q1 → q2), (q3 ∨ q4)}. Likewise, for clarity, the proposition (q1 → q2)→ (q3∨q4)
can be expressed in parentheses if an operation is carried out on it and on
some other proposition, by using some logical connective. Hence, for example,
((q1 → q2)→ (q3 ∨ q4)) ∧ (q1 → q5) is the proposition obtained through the
action of the logical connective of conjunction on the propositions (q1 → q2)→
(q3 ∨ q4) and (q1 → q5).

Given the correspondences mentioned, a) between propositions and sets,
and b) between logical connectives and set theory operators, considerations
of this same type concerning the use of parentheses are valid in that theory.
Therefore, the set (C1 −→| C2) −→| (C3 ∪ C4) corresponds to (q1 → q2) →
(q3 ∨ q4), the set C1 −→| C5 corresponds to the proposition q1 → q5, and the
set ((C1 −→| C2) −→| (C3 ∪ C4)) ∩ (C1 −→| C5) corresponds to the proposition
((q1 → q2)→ (q3 ∨ q4)) ∧ (q1 → q5).

If in the logical operations carried out there are n propositions – q1, q2,
. . . , qn – in the corresponding truth tables, there will be 2n rows because each
of those propositions can have two truth values: true or false. Each row of those
tables will correspond to each possible case of different assignments for the truth
values of each of those n propositions. Since for each of these cases there are
two possible assignments of truth value for the logical function to be specified,
there are 2(2

n) possible logical functions of n propositions. Thus, for example,
if n = 2, there are 16 possible logical functions; if n = 3, there are 256 possible
logical functions; and if n = 4, there are 65,536 possible logical functions.

For each of the 2(2
n) logical functions of n propositions, for n = 1, 2, 3 . . .,

there is, according to the approach used, a function of n sets, which also is a
set.
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3 Isomorphism between Each Law – Theorem
or Tautology – of Propositional Calculus and
the Corresponding Expression of the Univer-
sal Set

This section will provide only a) the characterizations of the main notions con-
cerning the topic discussed; and b) three examples of isomorphism existing
between the tautologies of propositional calculus and the corresponding sets
(according to section 2).

If a function of n propositions, for n = 1, 2, 3, . . ., is true regardless of the
truth values of each of those n propositions, then that function, which is also
a proposition, is considered a law – or tautology – of propositional calculus. A
tautology is true given its logical form, or structure.

The negation of a tautology which is a function of n propositions is known
as a contradiction and is false, regardless of the values of truth of each of those
n propositions.

The law of propositional calculus known in Latin as modus tollendo ponens
– that is, “the mode that, by denying, affirms”– is stated below in (8); and the
corresponding set, which is isomorphic to it according to section 2, in (9).

((q1 ∨ q2) ∧ q2)→ q1 (8)

((C1 ∪ C2) ∩ C2) −→| C1 (9)

Figure 6 presents a) the truth table of the proposition specified in (8), and
b) the membership table of the corresponding set specified in (9).

q1 q2 q1 ∨ q2 q2 (q1 ∨ q2) ∧ q2 ((q1 ∨ q2) ∧ q2)→ q1

0 0 0 1 0 1
0 1 1 0 0 1
1 0 1 1 1 1
1 1 1 0 0 1

(a) Truth table of the proposition specified in (8)

C1 C2 C1 ∪ C2 C2 (C1 ∪ C2) ∩ C2 ((C1 ∪ C2) ∩ C2) −→| C1

0 0 0 1 0 1
0 1 1 0 0 1
1 0 1 1 1 1
1 1 1 0 0 1

(b) Membership table of the corresponding set, specified in (9)

Figure 6: a) Truth table of the proposition specified in (8), and b) membership
table of the corresponding set, specified in (9)
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In the truth table in figure 6a it can be seen that the proposition ((q1∨ q2)∧
q2)→ q1 is a tautology because it is true given its logical form; that is, it is true
regardless of the truth values of q1 and q2.

In the membership table in 6b it can be seen that for any element of the
universal set U there are four possibilities: 1) that it belongs neither to C1 nor to
C2 (as in the first row of the membership table); 2) that it does not belong to C1

and does belong to C2 (as in the second row of the membership table); 3) that it
belongs to C1 and not to C2 (as in the third row of the membership table); and
4) that it belongs both to C1 and to C2 (as in the fourth row of the membership
table). In each of these cases, the element of U considered belongs to the set

((C1∪C2)∩C2) −→| C1. Therefore, given that any element of U belongs to that

set, it is inferred that the set is equal to U: ((C1 ∪ C2) ∩ C2) −→| C1 = U.
The law of propositional calculus known in Latin as modus tollendo tollens

– that is, the mode that by denying, denies – is stated in (10) below; and the
corresponding set, which is isomorphic to it, is stated in (11).

((q1 → q2) ∧ q2)→ q1 (10)

((C1 −→| C2) ∩ C2) −→| C1 (11)

Figure 7 presents a) the truth table of the proposition specified in (10) and b)
the membership table of the corresponding set, isomorphic to the proposition.

q1 q2 q1 → q2 q2 (q1 → q2) ∧ q2 q1 ((q1 → q2) ∧ q2)→ q1

0 0 1 1 1 1 1
0 1 1 0 0 1 1
1 0 0 1 0 0 1
1 1 1 0 0 0 1

(a) Truth table of the proposition specified in (10)

C1 C2 C1 → C2 C2 (C1 −→| C2) ∩ C2 C1 ((C1 −→| C2) ∩ C2) −→| C1

0 0 1 1 1 1 1
0 1 1 0 0 1 1
1 0 0 1 0 0 1
1 1 1 0 0 0 1

(b) Membership table of the set specified in (11)

Figure 7: a) Truth table of the proposition specified in (10), and b) membership
table of the set specified in (11)

In figure 7 it is seen a) that ((q1 → q2) ∧ q2) → q1 is a tautology of propo-

sitional calculus, and b) that the corresponding set ((C1 −→| C2) ∩C2) −→| C1,

which is isomorphic to it, is equal to the universal set U: (C1 −→| C2)∩C2) −→|
C1.
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A law of propositional calculus – one of the laws of De Morgan – is stated
in (12), and the corresponding set, which is isomorphic to it, is stated in (13)
below.

(q1 ∧ q2)←→ (q1 ∨ q2) (12)

(C1 ∩ C2)←→| (C1 ∪ C2) (13)

Figure 8 presents a) the truth table of the proposition specified in (12) and
b) the membership table of the set specified in (13).

q1 q2 q1 ∧ q2 (q1 ∧ q2) q1 q2 (q1 ∨ q2) (q1 ∧ q2)←→ (q1 ∨ q2)

0 0 0 1 1 1 1 1
0 1 0 1 1 0 1 1
1 0 0 1 0 1 1 1
1 1 1 0 0 0 0 1

(a) Truth table of the proposition specified in (12)

C1 C2 C1 ∩ C2 (C1 ∩ C2) C1 C2 (C1 ∪ C2) (C1 ∩ C2)←→| (C1 ∪ C2)

0 0 0 1 1 1 1 1
0 1 0 1 1 0 1 1
1 0 0 1 0 1 1 1
1 1 1 0 0 0 0 1

(b) Membership table of the set specified in (13)

Figure 8: a) Truth table of the proposition specified in (12), and b) membership
table of the set specified in (13)

In figure 8 it is seen a) that (q1 ∧ q2)←→ (q1 ∨ q2) is a tautology of proposi-

tional calculus and b) that the corresponding set (C1∩C2)←→| (C1∪C2), which

is isomorphic to it, is equal to the universal set U: (C1 ∩ C2)←→| (C1 ∪ C2) =
U.

4 Categorical Propositions and Their Corres-
ponding Sets

Categorical propositions are assertions about two sets that affirm or deny that
one of those sets is totally or partially included in the other set. In this section
those sets are called C4 and C5 respectively. Those names have been chosen for
the following reason: When referring to categorical syllogisms, reasoning of a
particular type, the names C1, C2 and C3 will be used to refer systematically to
certain sets which play an important role in that reasoning. To avoid confusion,
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those three names are not used in this section. Of course, instead of using C4

and C5, names such as F and G respectively could have been used.
Four examples of categorical propositions are given below:

1. All generals are brave.
2. No generals are brave.
3. Some generals are brave.
4. Some generals are not brave.

In each of the four categorical propositions, reference is made to the follow-
ing two sets:

C4: generals; C5: brave persons

The following is another set of four examples of categorical propositions:

1. All philosophers are honest.
2. No philosophers are honest.
3. Some philosophers are honest.
4. Some philosophers are not honest.

The sets referred to in each of these other four categorical propositions are
these:

C4: philosophers; C5: honest persons

If both sets of categorical propositions are compared, it is noted that each
proposition of the first set has the same logical form as the proposition to which
the same number was assigned in the second set. Thus, four types of categorical
propositions can be distinguished. Any categorical proposition, given its logical
form, may be ascribed to one of these four types.

The propositions assigned number 1, in both sets of four propositions, are
examples of those known as affirmative universal propositions. The symbolic
expression of either of them is the following:

All C4 are C5.

According to the preceding proposition, if any element whatsoever of the
universal set U considered belongs to the set C4, then it belongs also to the set
C5. If that proposition is true, then the possibility that any element whatsoever
of U could belong to C4 and not also to C5 is eliminated. According to section
2, any element of U belonging to the set C4 −→| C5 satisfies that condition;
according to the membership table of C4 −→| C5, the possibility that the element
could belong to C4 and not to C5 is eliminated.

The symbolic expression of any affirmative universal categorical proposition
is stated once more below, with the corresponding set at the right.

13



All C4 are C5. (C4 −→| C5)

The propositions assigned number 2, in both sets of four propositions, are
examples of those called negative universal propositions. The symbolic expres-
sion of either of them is the following:

No C4 are C5.

According to the preceding proposition, if any element of the universal set U
considered belongs to the set C4, then it does not belong to the set C5; that is,

it also does belong to the set C5. If that proposition is true, then the possibility

of any element whatsoever of U belonging to C4, but not belonging also to C5,

is eliminated. Any element of U belonging to the set (C4 −→| C5) satisfies this
condition: According to the membership table of (C4 −→| C5), the possibility

of that element belonging to C4, but not belonging also to C5, is eliminated.
Below the symbolic expression of any negative universal categorical propo-

sition is given once more, with the corresponding set on the right.

No C4 are C5. (C4 −→| C5)

The propositions assigned number 3, in both sets of propositions, are exam-
ples of those called affirmative particular categorical propositions. The symbolic
expression of either of them is the following:

Some C4 are C5.

According to the preceding proposition there is at least one element of the
universal set U considered which belongs both to C4 and to C5. If there is not at
least one element of U that belongs both to C4 and to C5, then that proposition
is false. According to section 2, any element of U that belongs both to C4 and
to C5 belongs to the set which is the intersection of C4 and C5 – C4∩C5. Thus,
C4 ∩ C5 is the set corresponding to that proposition.

The symbolic expression of any affirmative particular categorical proposition
is stated again below, with the corresponding set at the right.

Some C4 are C5. (C4 ∩ C5)

The propositions assigned the number 4, in both sets of four propositions,
are examples of those known as negative particular categorical propositions.
The symbolic expression of either of them is the following:

Some C4 are not C5.

According to the preceding proposition, there is at least one element of the
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universal set U that belongs to C4 and does not belong to C5; that is, it belongs

to C5. If there is not at least one element of U that belongs both to C4 and to

C5, then that proposition is false. Any element of U that belongs both to C4

and to C5 belongs to the set that is the intersection of C4 and C5 – C4 ∩ C5.

Thus, C4 ∩ C5 is the set corresponding to that proposition.
The symbolic expression of any particular negative categorical proposition

is given below once more, with the corresponding set at the right.

Some C4 are not C5. (C4 ∩ C5)

5 Characterization of Categorical Syllogisms

A syllogism is a type of deductive reasoning in which a categorical proposi-
tion known as a conclusion is inferred, or deduced, from two other categorical
propositions known as premises.

In this article the first premise of each categorical syllogism will be named
s1, given that “statement” or “sentence” are considered synonyms of “proposi-
tion”. The second premise and the conclusion will be called s2 and s3, respec-
tively. These denominations have been preferred to q1, q2 and q3, for example,
to emphasize that these are not just any three propositions, but rather three
categorical propositions constituting a categorical syllogism, linked together due
to their internal structures.

The predicate term of the conclusion – s3 – is known as the major term of the
syllogism and the subject term of s3 is called the minor term of the syllogism.
The major premise of the syllogism, which in this article will correspond sys-
tematically to s1, is that which contains the major term. The minor premise of
the syllogism, which in this article will correspond to s2, is that which contains
the minor term.

The third term of the syllogism does not appear in the conclusion s3, but it
does appear in each of the premises. This third term is called the middle term.

Each term of a syllogism may be assigned to a particular set. In this article
the set C3 will correspond to the major term, C1 will correspond to the minor
term, and C2 will correspond to the middle term.

The seventh example of a categorical syllogism considered in section 7 is the
following:

s1: All engineers are pragmatic.
s2: Some engineers are wealthy.

∴ s3: Some wealthy persons are pragmatic.

The symbol ∴ preceding s3, means “therefore”.
According to the above explanations, the sets corresponding to the different

terms of that syllogism are the following:
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C1: wealthy persons C2: engineers C3: pragmatic persons

Given these conventions, the syllogism under consideration can be presented
as follows:

s1: All C2 are C3.
s2: Some C2 are C1.

∴ s3: Some C1 are C3.

6 Specification of the Membership Table Method
(MTM)

With the terminology of propositional calculus, the most important character-
istic of each categorical syllogism – that s3 may be inferred, or deduced, from
s1 and s2 – can be expressed as follows: (s1 ∧ s2)→ s3.

The internal structure of the propositions s1, s2 and s3 is not made evident by
their names. It is thus not feasible to use a resource directly from propositional
calculus, such as a truth table to prove in the case of the syllogism considered
that it is valid that (s1 ∧ s2) → s3 is a tautology, or law, of that calculus.
However, the proposition (s1 ∧ s2) → s3 does make it possible to show one of
the most relevant characteristics of valid categorical syllogisms: If (s1 ∧ s2) –
that is, the conjunction of s1 and s2 which is the antecedent of that proposition
– is true, then s3 (the consequent of that proposition) is true.

According to section 2, a certain set corresponds to each proposition. The
sets corresponding respectively to s1, s2 and s3 will be denominated S1, S2 and
S3. Each of those sets does reveal the relation between the terms of the corre-
sponding proposition.

In addition, according to section 2, the set (S1∩S2) −→| S3 corresponds to the
proposition s1∧s2)→ s3. That set will be denominated S: S = (S1∩S2) −→| S3.

According to the MTM, the corresponding set S should be obtained for each
categorical syllogism. If S is equal to the universal set U – that is, if S = U
– then that categorical syllogism is valid. If S ̸= U, then that syllogism is not
valid. The different types of invalid categorical syllogisms will not be considered
in this article. The MTM will be used only to determine whether the categorical
syllogism considered is valid or not valid.

Recall that in the column for S – the set corresponding to the syllogism con-
sidered – in the membership table of that set, the following should be examined:

a) If each element of that column is equal to one (1) then S = U, and the
syllogism considered is, therefore, valid;
b) If at least one element of that column is equal to zero (0), then S ̸= U, and
the syllogism considered is, therefore, not valid.
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7 Determining the Validity, or the Non-Validity,
of Diverse Categorical Syllogisms Using the
MTM: Examples

The first six examples of the categorical syllogisms considered in this section
were taken from [17].

For each example considered, the following aspects are specified: 1) the cat-
egorical syllogism expressed in natural language; 2a) that syllogism expressed in
terms of the sets C1, C2 and C3, and 2b) the corresponding sets S1, S2 and S3,
respectively; 3) the set S corresponding to the syllogism; and 4) the member-
ship table which makes it possible to determine whether S = U, in which case
the syllogism is valid, or whether S ̸= U , in which case the syllogism is not valid.

Example 1

s1: All men are mortal.
s2: All Greeks are men.

∴ s3: All Greeks are mortal.

C1: Greeks C2: men C3: mortal beings

s1: All C2 are C3. S1 = (C2 −→| C3)

s2: All C1 are C2. S2 = (C1 −→| C2)

∴ s3: All C1 are C3. S3 = (C1 −→| C3)

S = ((S1 ∩ S2) −→| S3) = ((C2 −→| C3) ∩ (C1 −→| C2)) −→| (C1 −→| C3)

C1 C2 C3
S1 =

C2 −→| C3

S2 =
(C1 −→| C2)

S3 =
(C1 −→| C3)

(S1 ∩ S2)
S =

(S1 ∩ S2) −→| S3

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 0 1 1 1 1
0 1 1 1 1 1 1 1
1 0 0 1 0 0 0 1
1 0 1 1 0 1 0 1
1 1 0 0 1 0 0 1
1 1 1 1 1 1 1 1

Figure 9: Membership table of the set S corresponding to the syllogism consid-
ered

The categorical syllogism considered is valid.
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Example 2

s1: No men are perfect.
s2: All Greeks are men.

∴ s3: No Greeks are perfect.

C1: Greeks C2: men C3: perfect beings

s1: No C2 are C3. S1 = (C2 −→| C3)

s2: All C1 are C2. S2 = (C1 −→| C2)

∴ s3: No C1 are C3. S3 = (C1 −→| C3)

S = ((S1 ∩ S2) −→| S3) = ((C2 −→| C3) ∩ (C1 −→| C2)) −→| (C1 −→| C3)

C1 C2 C3 C3

S1 =

C2 −→| C3

S2 =
(C1 −→| C2)

S3 =

(C1 −→| C3)
(S1 ∩ S2)

S =
(S1 ∩ S2) −→| S3

0 0 0 1 1 1 1 1 1
0 0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1 1
0 1 1 0 0 1 1 0 1
1 0 0 1 1 0 1 0 1
1 0 1 0 1 0 0 0 1
1 1 0 1 1 1 1 1 1
1 1 1 0 0 1 0 0 1

Figure 10: Membership table of the set S corresponding to the syllogism con-
sidered

The categorical syllogism considered is valid.
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Example 3

s1: All philosophers are wise.
s2: Some Greeks are philosophers.

∴ s3: Some Greeks are wise.

C1: Greeks C2: philosophers C3: wise persons

s1: All C2 are C3 S1 = (C2 −→| C3)

s2: Some C1 are C2 S2 = (C1 ∩ C2)

∴ s3: Some C1 are C3 S3 = (C1 ∩ C3)

S = ((S1 ∩ S2) −→| S3) = ((C2 −→| C3) ∩ (C1 ∩ C2)) −→| (C1 −→| C3)

C1 C2 C3
S1 =

C2 −→| C3

S2 =
(C1 ∩ C2)

S3 =
(C1 ∩ C3)

(S1 ∩ S2)
S =

(S1 ∩ S2) −→| S3

0 0 0 1 0 0 0 1
0 0 1 1 0 0 0 1
0 1 0 0 0 0 0 1
0 1 1 1 0 0 0 1
1 0 0 1 0 0 0 1
1 0 1 1 0 1 0 1
1 1 0 0 1 0 0 1
1 1 1 1 1 1 1 1

Figure 11: Membership table of the set S corresponding to the syllogism con-
sidered

The categorical syllogism considered is valid.
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Example 4

s1: No philosophers are wicked.
s2: Some Greeks are philosophers.

∴ s3: Some Greeks are not wicked.

C1: Greeks C2: philosophers C3: wicked persons

s1: No C2 are C3. S1 = (C2 −→| C3)

s2: Some C1 are C2. S2 = (C1 ∩ C2)

∴ s3: Some C1 are not C3. S3 = (C1 ∩ C3)

S = ((S1 ∩ S2) −→| S3) = ((C2 −→| C3) ∩ (C1 ∩ C2)) −→| (C1 ∩ C3)

C1 C2 C3 C3

S1 =

C2 −→| C3

S2 =
(C1 ∩ C2)

S3 =

(C1 ∩ C3)
(S1 ∩ S2)

S =
(S1 ∩ S2) −→| S3

0 0 0 1 1 0 0 0 1
0 0 1 0 1 0 0 0 1
0 1 0 1 1 0 0 0 1
0 1 1 0 0 0 0 0 1
1 0 0 1 1 0 1 0 1
1 0 1 0 1 0 0 0 1
1 1 0 1 1 1 1 1 1
1 1 1 0 0 1 0 0 1

Figure 12: Membership table of the set S corresponding to the syllogism con-
sidered

The categorical syllogism considered is valid.
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Example 5

s1: All Greeks are men.
s2: Some mortals are not men.

∴ s3: Some mortals are not Greeks.

C1: mortal beings C2: men C3: Greeks

s1: All C3 are C2. S1 =(C3 −→| C2)

s2: Some C1 are not C2. S2 =(C1 ∩ C2)

∴ s3: Some C1 are not C3. S3 =(C1 ∩ C3)

S = ((S1 ∩ S2) −→| S3) = ((C3 −→| C2) ∩ (C1 ∩ C2)) −→| (C1 ∩ C3)

C1 C2 C3 C2 C3
S1 =

C3 −→| C2)

S2 =

(C1 ∩ C2)

S3 =

(C1 ∩ C3)
(S1 ∩ S2)

S =
(S1 ∩ S2) −→| S3

0 0 0 1 1 1 0 0 0 1
0 0 1 1 0 0 0 0 0 1
0 1 0 0 1 1 0 0 0 1
0 1 1 0 0 1 0 0 0 1
1 0 0 1 1 1 1 1 1 1
1 0 1 1 0 0 1 0 0 1
1 1 0 0 1 1 0 1 0 1
1 1 1 0 0 1 0 0 0 1

Figure 13: Membership table of the set S corresponding to the syllogism con-
sidered

The categorical syllogism considered is valid.
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Example 6

s1: Some men are not Greeks.
s2: All men are mortal.

∴ s3: Some mortals are not Greeks.

C1: mortal beings C2: men C3: Greeks

s1: Some C2 are not C3. S1 = (C2 ∩ C3)

s2: All C2 are C1. S2 = (C2 −→| C1)

∴ s3: Some C1 are not C3. S3 = (C1 ∩ C3)

S = ((S1 ∩ S2) −→| S3) = ((C2 ∩ C3) ∩ (C2 −→| C1)) −→| (C1 ∩ C3)

C1 C2 C3 C3

S1 =

C2 ∩ C3

S2 =
(C2 −→| C1)

S3 =

(C1 ∩ C3)
(S1 ∩ S2)

S =
(S1 ∩ S2) −→| S3

0 0 0 1 0 1 0 0 1
0 0 1 0 0 1 0 0 1
0 1 0 1 1 0 0 0 1
0 1 1 0 0 0 0 0 1
1 0 0 1 0 1 1 0 1
1 0 1 0 0 1 0 0 1
1 1 0 1 1 1 1 1 1
1 1 1 0 0 1 0 0 1

Figure 14: Membership table of the set S corresponding to the syllogism con-
sidered

The categorical syllogism considered is valid.
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Example 7

s1: All engineers are pragmatic.
s2: Some engineers are wealthy.

∴ s3: Some wealthy persons are pragmatic.

C1: wealthy persons C2: engineers C3: pragmatic persons

s1: All C2 are C3. S1 = (C2 −→| C3)

s2: Some C2 are C1. S2 = (C2 ∩ C1)

∴ s3: Some C1 are C3. S3 = (C1 ∩ C3)

S = ((S1 ∩ S2) −→| S3) = ((C2 −→| C3) ∩ (C2 ∩ C1)) −→| (C1 ∩ C3)

If it is taken into account that (C1 ∩ C2) = (C2 ∩ C1), it is noted that the
set corresponding to the categorical syllogism in example 7 has the same form
as the set corresponding to the categorical syllogism in example 3. The latter
categorical syllogism is valid. Therefore, the categorical syllogism in example 7
is valid.

Example 8

s1: No intellectuals are superstitious.
s2: Some French persons are intellectuals.

∴ s3: Some French persons are not superstitious.

C1: French persons C2: intellectuals C3: superstitious per-
sons

s1: No C2 are C3. S1 = (C2 −→| C3)

s2: Some C1 are C2. S2 = (C1 ∩ C2)

∴ s3: Some C1 are not C3. S3 = (C1 ∩ C3)

S = ((S1 ∩ S2) −→| S3) = ((C2 −→| C3) ∩ (C1 ∩ C2)) −→| (C1 ∩ C3)

It is noted that the set corresponding to the categorical syllogism in exam-
ple 8 has the same form as the set corresponding to the categorical syllogism in
example 4. The latter categorical syllogism is valid. Therefore, the categorical
syllogism in example 8 is valid.
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Example 9

s1: All men are rational.
s2: All Spaniards are men.

∴ s3: All Spaniards are rational.

C1: Spaniards C2: men C3: rational men

s1: All C2 are C3. S1 = (C2 −→| C3)

s2: All C1 are C2. S2 = (C1 −→| C2)

∴ s3: All C1 are C3. S3 = (C1 −→| C3)

S = ((S1 ∩ S2) −→| S3) = ((C2 −→| C3) ∩ (C1 −→| C2)) −→| (C1 −→| C3)

It is noted that the set corresponding to the categorical syllogism in exam-
ple 9 has the same form as the set corresponding to the categorical syllogism in
example 1. The latter categorical syllogism is valid. Therefore, the categorical
syllogism in example 9 is valid.
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Example 10

s1: All sculptors are artists.
s2: No artists are fossils.

∴ s3: No fossils are sculptors.

C1: fossils C2: artists C3: sculptors

s1: All C3 are C2. S1 = (C3 −→| C2)

s2: No C2 are C1. S2 = (C2 −→| C1)

∴ s3: No C1 are C2. S3 = (C1 −→| C2)

S = ((S1 ∩ S2) −→| S3) = ((C3 −→| C2) ∩ (C2 −→| C1)) −→| (C1 −→| C2)

C1 C2 C3 C1 C2
S1 =

C3 −→| C2

S2 =

(C2 −→| C1)

S3 =

(C1 −→| C2)
(S1 ∩ S2)

S =
(S1 ∩ S2) −→| S3

0 0 0 1 1 1 1 1 1 1
0 0 1 1 1 0 1 1 0 1
0 1 0 1 0 1 1 1 1 1
0 1 1 1 0 1 1 1 1 1
1 0 0 0 1 1 1 1 1 1
1 0 1 0 1 0 1 1 0 1
1 1 0 0 0 1 0 0 0 1
1 1 1 0 0 1 0 0 0 1

Figure 15: Membership table of the set S corresponding to the syllogism con-
sidered

The categorical syllogism considered is valid.

25



Example 11

s1: No humanists are corrupt.
s2: All despots are corrupt.

∴ s3: No despots are humanists.

C1: despots C2: corrupt persons C3: humanists

s1: No C3 are C2. S1 = (C3 −→| C2)

s2: All C1 are C2. S2 = (C1 −→| C2)

∴ s3: No C1 are C3. S3 = (C1 −→| C3)

S = ((S1 ∩ S2) −→| S3) = ((C3 −→| C2) ∩ (C1 −→| C2)) −→| (C1 −→| C3)

C1 C2 C3 C2 C3

S1 =

C3 −→| C2

S2 =
(C1 −→| C2)

S3 =

(C1 −→| C3)
(S1 ∩ S2)

S =
(S1 ∩ S2) −→| S3

0 0 0 1 1 1 1 1 1 1
0 0 1 1 0 1 1 1 1 1
0 1 0 0 1 1 1 1 1 1
0 1 1 0 0 0 1 1 0 1
1 0 0 1 1 1 0 1 0 1
1 0 1 1 0 1 0 0 0 1
1 1 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 0 0 1

Figure 16: Membership table of the set S corresponding to the syllogism con-
sidered

The categorical syllogism considered is valid.
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Example 12

s1: Some mammals are dogs.
s2: All mammals are vertebrates.

∴ s3: Some vertebrates are dogs.

C1: vertebrates C2: mammals C3: dogs

s1: Some C2 are C3. S1 =(C2 ∩ C3)

s2: All C2 are C1. S2 =(C2 −→| C1)

∴ s3: Some C1 are C3. S3 =(C1 ∩ C3)

S = ((S1 ∩ S2) −→| S3) = ((C2 ∩ C3) ∩ (C2 −→| C1)) −→| (C1 ∩ C3)

C1 C2 C3
S1 =

C2 ∩ C3

S2 =
(C2 −→| C1)

S3 =
(C1 ∩ C3)

(S1 ∩ S2)
S =

(S1 ∩ S2) −→| S3

0 0 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 1 0 0 0 0 0 1
0 1 1 1 0 0 0 1
1 0 0 0 1 0 0 1
1 0 1 0 1 1 0 1
1 1 0 0 1 0 0 1
1 1 1 1 1 1 1 1

Figure 17: Membership table of the set S corresponding to the syllogism con-
sidered

The categorical syllogism considered is valid.
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Example 13

s1: No artists are Neo-Kantians.
s2: Some Germans are Neo-Kantians.

∴ s3: Some Germans are not artists.

C1: Germans C2: Neo-Kantians C3: artists

s1: No C3 are C2. S1 =(C3 −→| C2)

s2: Some C1 are C2. S2 =(C1 ∩ C2)

∴ s3: Some C1 are not C3. S3 =(C1 ∩ C3)

S = ((S1 ∩ S2) −→| S3) = ((C3 −→| C2) ∩ (C1 ∩ C2)) −→| (C1 −→| C3)

C1 C2 C3 C2 C3

S1 =

C3 −→| C2

S2 =
(C1 ∩ C2)

S3 =

(C1 ∩ C3)
(S1 ∩ S2)

S =
(S1 ∩ S2) −→| S3

0 0 0 1 1 1 0 0 0 1
0 0 1 1 0 1 0 0 0 1
0 1 0 0 1 1 0 0 0 1
0 1 1 0 0 0 0 0 0 1
1 0 0 1 1 1 0 1 0 1
1 0 1 1 0 1 0 0 0 1
1 1 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 0 0 1

Figure 18: Membership table of the set S corresponding to the syllogism con-
sidered

The categorical syllogism considered is valid.
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Example 14

s1: All poets are visionaries.
s2: All prophets are visionaries.

∴ s3: Some prophets are poets.

C1: prophets C2: visionaries C3: poets

s1: All C3 are C2. S1 =(C3 −→| C2)

s2: All C1 are C2. S2 =(C1 −→| C2)

∴ s3: Some C1 are C3. S3 =(C1 ∩ C3)

S = ((S1 ∩ S2) −→| S3) = ((C3 −→| C2) ∩ (C1 −→| C2)) −→| (C1 ∩ C3)

C1 C2 C3
S1 =

C3 −→| C2

S2 =
(C1 −→| C2)

S3 =
(C1 ∩ C3)

(S1 ∩ S2)
S =

(S1 ∩ S2) −→| S3

0 0 0 1 1 0 1 0
0 0 1 0 1 0 0 1
0 1 0 1 1 0 1 0
0 1 1 1 1 0 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 1 0 1
1 1 0 1 1 0 1 0
1 1 1 1 1 1 1 1

Figure 19: Membership table of the set S corresponding to the syllogism con-
sidered

Given that in the column of S there are membership values equal to zero
(0), S ̸= U. Therefore, the categorical syllogism considered is not valid.
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Example 15

s1: Some landowners are not egotists.
s2: No philanthropists are egotists.

∴ s3: Some philanthropists are landowners.

C1: philanthropists C2: egotists C3: landowners

s1: Some C3 are not C2. S1 = (C3 ∩ C2)

s2: No C1 are C2. S2 = (C1 −→| C2)

∴s3: Some C1 are C3. S3 = (C1 ∩ C3)

S = ((S1 ∩ S2) −→| S3) = ((C3 ∩ C2) ∩ (C1 −→| C2)) −→| (C1 ∩ C3)

C1 C2 C3 C2

S1 =

C3 ∩ C2

S2 =

(C1 −→| C2)

S3 =
(C1 ∩ C3)

(S1 ∩ S2)
S =

(S1 ∩ S2) −→| S3

0 0 0 1 0 1 0 0 1
0 0 1 1 1 1 0 1 0
0 1 0 0 0 1 0 0 1
0 1 1 0 0 1 0 0 1
1 0 0 1 0 1 0 0 1
1 0 1 1 1 1 1 1 1
1 1 0 0 0 0 0 0 1
1 1 1 0 0 0 1 0 1

Figure 20: Membership table of the set S corresponding to the syllogism con-
sidered

Given that in the column of S there is a membership value equal to zero (0),
S ̸= U. Therefore, the categorical syllogism considered is not valid.

30



Example 16

s1: All cosmologists are scientists.
s2: Some scientists are polyglots.

∴ s3: Some polyglots are cosmologists.

C1: polyglots C2: scientists C3: cosmologists

s1: All C3 are C2. S1 =(C3 −→| C2)

s2: Some C2 are C1. S2 =(C2 ∩ C1)

∴ s3: Some C1 are C3. S3 =(C1 ∩ C3)

S = ((S1 ∩ S2) −→| S3) = ((C3 −→| C2) ∩ (C2 ∩ C1)) −→| (C1 ∩ C3)

C1 C2 C3
S1 =

C3 −→| C2

S2 =
(C2 ∩ C1)

S3 =
(C1 ∩ C3)

(S1 ∩ S2)
S =

(S1 ∩ S2) −→| S3

0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 1
0 1 0 1 0 0 0 1
0 1 1 1 0 0 0 1
1 0 0 1 0 0 0 1
1 0 1 0 0 1 0 1
1 1 0 1 1 0 1 0
1 1 1 1 1 1 1 1

Figure 21: Membership table of the set S corresponding to the syllogism con-
sidered

Given that in the column of S there is a membership value equal to zero (0),
S ̸= U. Therefore, the categorical syllogism considered is not valid.
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8 Discussion and Perspectives

Reference was made to the relation existing between the truth tables of propo-
sitional calculus and the membership tables of set theory, used in the MTM,
for example. Within the framework of canonical fuzzy logic (CFL) [18], the
latter tables can be considered truth tables, in the strict sense. One of the main
objectives of this series of articles on logic presented by the authors is to shed
light on the relations existing – both in classical logic and in diverse variants
of some non-classical logics – between different calculi of these logics, such as
propositional calculus and predicate calculus, the last of which is expressed in
the terminology of set theory. (Another of the objectives of this research pro-
gram is to show how classical logic can be considered a “limit case” of those
variants of non-classical logics.)

Categorical syllogisms, simple types of reasoning which have been studied a
great deal, are important from historical and educational perspectives. In this
research program they are a “testbed” for different methods which will be evalu-
ated according to their possibilities of 1) being applied to determine the validity
of more complex types of reasoning, and 2) being automatized for their use in
disciplines such as control engineering and artificial intelligence. A method dif-
ferent from the MTM to determine the validity of categorical syllogisms will be
presented in another article.

Note: A computer program based on the Membership Table Method (MTM) for
the determination of the validity of categorical sylllogisms has been published
on the follolwing sites:

1. https://github.com/AppliedMathGroup/Logic

2. https://www.appliedmathgroup.org/en/mtm.htm
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